
Integrating RAM and Disk Based Verification
within the Murϕ Verifier�

Giuseppe Della Penna1, Benedetto Intrigila1, Igor Melatti1, Enrico Tronci2,
and Marisa Venturini Zilli2

1 Dip. di Informatica, Università di L’Aquila, Coppito 67100, L’Aquila, Italy
{dellapenna,intrigila,melatti}@di.univaq.it

2 Dip. di Informatica Università di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy
{tronci,zilli}@dsi.uniroma1.it

Abstract. We present a verification algorithm that can automatically
switch from RAM based verification to disk based verification without
discarding the work done during the RAM based verification phase. This
avoids having to choose beforehand the proper verification algorithm.
Our experimental results show that typically our integrated algorithm is
as fast as (sometime faster than) the fastest of the two base (i.e. RAM
based and disk based) verification algorithms.

1 Introduction

Disk based verification algorithms [4,5,8,3,2] turn out to be very useful to coun-
teract state explosion (i.e. the huge amount of memory required to complete state
space exploration). However, using a disk based verification algorithm for a task
that could have been completed just using a RAM based verification algorithm
results in a waste of time. Unfortunately it is hard to predict beforehand the size
of the set of reachable states so as to use the proper (RAM based or disk based)
verification algorithm.

In this paper we present an explicit verification algorithm that can automa-
tically switch from RAM based verification to disk based verification without
discarding the work done during the RAM based verification phase. This avoids
having to choose beforehand the kind of verification algorithm, thus saving on
the verification time.

Our main contributions can be summarized as follows.

– We present (Section 3) an integration scheme (we call it serialization scheme)
for the RAM based verification algorithm presented in [9] and the disk based
verification algorithm presented in [2].

– We present (Section 4) experimental results on using our serialization scheme
implemented within the Murϕ verifier. Our experimental results show that

� This research has been partially supported by MURST projects: MEFISTO and
SAHARA

D. Geist and E. Tronci (Eds.): CHARME 2003, LNCS 2860, pp. 277–282, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



278 G. Della Penna et al.

FIFO_Queue Q; HashTable T;
bfs(init_states, next) {
foreach s in init_states Enqueue(Q, s); /*load Q with init states*/
foreach s in init_states Insert(T, s); /*mark init states as visited*/
while (Q is not empty) { s = Dequeue(Q); /* current state */
foreach s’ in next(s) /* expand current state */
if (s’ is not in T) {Insert(T, s’); Enqueue(Q, s’);}}}

Fig. 1. Explicit Breadth First Visit (RAM based)

typically our integrated algorithm is as fast as (sometime faster than) the fas-
test of the two base (i.e. RAM based and disk based) verification algorithms.
This means that on a single machine we are able to run two verification
attempts (RAM based and then disk based) within the time taken by the
first terminating verification attempt.

2 State Space Exploration Algorithms

Our goal is to devise a serialization scheme for the RAM based state exploration
algorithm presented in [9] (CBF, for Cached Breadth First visit in the following)
and the disk based state exploration algorithm presented in [2] (DBF, for Disk
Breadth First visit in the following).

Figure 1 shows the algorithm and data structures used by a Breadth First
(BF) visit. Both the Enqueue() operation on BF queue Q as well as the Insert()
operation on the visited states hash table T in Figure 1 may fail because of lack
of memory. In such cases the BF visit stops with an out of memory message.

Algorithm CBF [9] implements BF queue Q on disk and, most importantly,
replaces with a cache table the hash table T used by the standard BF visit in
Figure 1. Using a cache table rather than a hash table means that, upon a
collision, CBF may forget visited states and, as a result, it may revisit states.
To prevent nontermination due to revisiting states, CBF terminates when the
collision rate (i.e. the ratio between the number of collisions and the number of
insertions) is above a user given threshold.

Algorithm DBF [2] is a disk based version of CBF. DBF uses a hash table
M to store signatures (e.g. see [6]) of recently visited states, a file D to store
signatures of all visited states (old states) and splits the BF queue Q of CBF
into two queues: Q ck and Q unck. DBF uses the checked queue Q ck to store the
states in the currently explored BF level and uses the unchecked queue Q unck
to store the states that are candidates to be on the next BF level. At the end of
each BF level, DBF uses file D to remove old states from Q unck.

Note that with DBF all data structures that grow with the state space size
(namely: D, Q ck, Q unck) are on disk, thus DBF bottleneck is computation time,
rather than memory space.



Integrating RAM and Disk Based Verification within the Murϕ Verifier 279

CBF DBF

Verifier
Configuration

Basic Verifier
Status

Visited States
History

(Disk File)

BFS Structures

Unckecked
Queue

Checked
Queue

Current Level States
(Hash Table)

Administrative
File

Verifier
Configuration

Basic Verifier
Status

Basic
Configuration State Space

File Visited State Space

Queue
File BFS Queue

BFS Structures

BFS Queue
Visited

State Space
(Cache)

Verifier
Configuration

Basic Verifier
Status

Parameter
Negotiation

Serialization Controller

Fig. 2. Serialization scheme for CBF, DBF.

3 Serializing CBF and DBF

In our context, a serialization scheme is an algorithm that allows us to stop the
current verification task and to resume it possibly using a different algorithm
without losing the work previously done.

Let S be a FSS and Time(A, S) the time needed by algorithm A to complete
state space exploration of S. A serialization scheme for state space exploration
algorithms A and B is a state space exploration algorithm [A, B] s.t. there exist
time instants 0 ≤ t1 < t2 ≤ Time([A, B],S) s.t. for all t ≤ t1, [A, B] behaves as
A and for all t ≥ t2, [A, B] behaves as B.

Of course a serialization scheme for algorithms A and B is interesting only
if the ratio Time([A, B],S)/min(Time(A, S), Time(B,S)) (serialization ratio) is
close to 1 for most FSS S. This means that on a single machine we are able to
run two verification attempts (namely A and B) within the time taken by the
first terminating verification attempt among the two.

In this section we present a serialization scheme for the RAM based state
space exploration algorithm CBF [9] and the disk based state space exploration
algorithm DBF [2].

To switch from CBF to DBF we have to save on disk the current status of
CBF in such a way that CBF status disk image can then be used to initialize
DBF data structures. Figure 2 summarizes our serialization scheme.

CBF status disk image includes the following elements:
1. A file (queue file in Figure 2) containing BF queue Q of Figure 1.
2. A file (state space file in Figure 2) containing the visited states (namely, cache
table T of Figure 1).
3. A file (administrative file in Figure 2) containing administrative information
about the verification process. For example, such a file may contain: compres-
sion options with which CBF has been started (e.g. bit compression [1], hash
compaction [6]); random seeds used in various hashing functions (e.g. in the



280 G. Della Penna et al.

computation of state signatures [6]), the BF level reached in the BF visit, the
number of states visited so far, etc.
In our serialization scheme switching from CBF to DBF is normally requested by
the serialization controller (Figure 2) when CBF collision rate becomes greater
than a user given threshold.

Serialization is requested by sending a signal to (the suitably modified) CBF.
Indeed, to keep easy and efficient our serialization scheme, we only allow CBF to
be stopped when it is easy to dump CBF current status to disk. Namely, before
a new state is dequeued from the verification queue Q. The CBF queue Q, the
cache T and the parameters are saved to disk in the respective files (Figure 2).

To initialize DBF using the disk image of CBF, first DBF parameters defining
state format are overridden by CBF parameters saved in the administrative file
on disk. This is needed to ensure compatibility between the data format saved
on disk and DBF data format.

CBF queue Q stored on disk is then loaded and connected to the DBF checked
queue Q ck. This is the best choice since Q has already been checked w.r.t T. DBF
unchecked queue Q unck and DBF hash table M are left empty. DBF history file
D is initialized with the set of visited states in T (Figure 2). After the above steps
DBF can start normally.

4 Experimental Results

We implemented both algorithms CBF and DBF within the Murϕ verifier. This
was done as illustrated, respectively, in [9] and [2]. The resulting verifiers are
called, respectively, Cached–Murϕ and Disk–Murϕ. Thus, not surprisingly, we
implemented the serialization scheme outlined in Section 3 within the Murϕ
verifier. We call Serial–Murϕ the resulting verifier. Unless otherwise stated, in
this Section CBF denotes Cached–Murϕ, DBF denotes Disk–Murϕ and [CBF,
DBF] denotes Serial–Murϕ.

Serial–Murϕ runs first Cached–Murϕ until it completes the verification or the
collision rate hits a user given threshold γ (set to 0.1 in our experiments). If the
collision rate is greater than or equal to γ, Serial–Murϕ switches to Disk–Murϕ.

Note that, from [9], we know that Cached–Murϕ behaves as standard Murϕ
(both for explored states and verification time) if the collision rate is low. The
limitation to 10% of collision rate used in our experiments makes Cached–Murϕ
very similar to standard Murϕ in terms of performance.

In this Section we report the experimental results we obtained using [CBF,
DBF]. Our goal is of course to assess effectiveness of our serialization scheme. Let
S be the FSS to be verified. Effectiveness in our case means that the serialization
ratio (Section 3) (Time([CBF, DBF], S)/ min(Time(CBF, S), Time(DBF, S)))
≈ 1.

We know [2] that if CBF has enough RAM then Time(CBF, S) < Time(DBF,
S). In such cases [CBF, DBF] never switches to DBF and thus behaves as CBF.
Thus in such cases (Time([CBF, DBF], S)/min(Time(CBF, S), Time(DBF, S)))
≈ 1 holds.



Integrating RAM and Disk Based Verification within the Murϕ Verifier 281

Table 1. Serial–Murϕ versus Disk–Murϕ.

Protocol Mem 0.5 0.4 0.3 Protocol Mem 0.5 0.4 0.3
eadash Rules 0.725 0.753 0.879 kerb Rules 0.431 0.466 0.779

States 0.989 0.955 1.011 States 0.876 0.760 0.964
Time 1.009 1.041 1.024 Time 0.875 0.859 1.049

ldash Rules 0.754 0.749 0.816 list6 Rules 0.538 0.673 0.752
States 0.985 0.923 0.945 States 0.756 0.857 0.888
Time 0.870 1.046 1.038 Time 1.033 1.000 1.110

mcslock1 Rules 0.594 0.587 0.510 mcslock2 Rules 0.673 0.760 0.843
States 0.820 0.770 0.632 States 1.006 1.030 1.050
Time 0.837 1.109 0.836 Time 0.984 1.169 1.040

n peterson Rules 0.635 0.689 0.739 sci Rules 0.607 0.709 0.554
States 1.002 0.984 0.951 States 0.867 0.975 0.694
Time 0.959 0.952 1.009 Time 1.013 0.976 0.971

sym.cache3 Rules 0.709 0.568 0.654
States 0.966 0.733 0.767
Time 1.029 0.988 1.057

Hence the interesting cases for us are those in which CBF does not have
enough RAM to complete the verification task. In such cases Time(CBF, S) =
∞, thus min(Time(CBF, S), Time(DBF, S)) = Time(DBF, S). Thus we need
to check whether Time([CBF, DBF], S)/Time(DBF, S) ≈ 1, which means that
[CBF, DBF] completes verification taking about the same time as DBF (even
after trying CBF first).

To carry out our experiments we used the benchmark protocols included in
the Murϕ distribution [1] that need at least (about) 100Kb of memory to be
verified by standard Murϕ, and the kerb protocol from [7].

First, for each protocol p in our benchmark we determined the minimum
amount of memory M(p) needed by Murϕ (version 3.1 from [1]) to complete the
verification. Then we compared Serial–Murϕ performances with those of Disk–
Murϕ for decreasing fractions of such a memory amount. Namely, we ran each
protocol p with memory limits 0.5M(p), 0.4M(p) and 0.3M(p).

In this way, we experimented our approach under conditions in which Serial–
Murϕ at some point is forced to switch to Disk–Murϕ since there is not enough
RAM for Cached–Murϕ to complete its verification task.

Our results are shown in Table 1, where columns correspond to the memory
fraction used for the experiment (e.g. column 0.5 corresponds to half of the
needed memory), and rows report the results obtained for a protocol in terms of
fired rules, visited states and time to complete the verification. To highlight the
usefulness of our approach, we report these results as ratios between the values
obtained by Serial–Murϕ and the values obtained using Disk–Murϕ on the same
protocols with the same memory restrictions. Thus row Time in Figure 1 gives
us the serialization ratio.

The results in Table 1 show that using Serial–Murϕ two verification attempts
(namely: Cached–Murϕ and then Disk–Murϕ) take about the same time of the
fastest terminating one (namely Disk–Murϕ). Indeed, in Table 1 Time rows



282 G. Della Penna et al.

range from 1.1 (i.e. a time overhead of 10%, worst case) to 0.8 (i.e. Serial–Murϕ
is 20% faster than Disk–Murϕ), averaging to 0.99.

From Table 1 we see that sometimes Serial–Murϕ is faster than Disk–Murϕ.
This is because Serial–Murϕ starts verification using a RAM based algorithm
(CBF) which is faster than the disk based algorithm (DBF) to which Serial–
Murϕ switches only after part of the verification work has been done (in RAM).

Summing up, the results in Table 1 show that Serial–Murϕ is typically as
fast as (sometime faster than) the fastest terminating one among Cached–Murϕ
and Disk–Murϕ. Thus, using Serial–Murϕ we can run two verification attempts
in the time normally taken by one.

5 Conclusions

We presented a verification algorithm that can automatically switch from RAM
based verification to disk based verification without discarding the work done
during the RAM based verification phase.

Our experimental results show that typically our integrated algorithm is as
fast as (sometime faster than) the fastest of the two base (i.e. RAM based and
disk based) verification algorithms. This means that on a single machine we are
able to run two verification attempts (RAM based and then disk based) within
the time taken by the first terminating verification attempt.

References

1. url: http://sprout.stanford.edu/ dill/ murphi.html.
2. G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli. Exploiting transition

locality in the disk based murϕ verifier. In Proc. of 4th International Conference
on “Formal Methods in Computer Aided Verification” (FMCAD), LNCS, Portland,
Oregon, USA, Nov 2002. Springer.

3. J. V. Sanghavi, R. K. Ranjan, R. K. Brayton, and A. Sangiovanni-Vincentelli. High
performance bdd package by exploiting memory hierarchy. In 33rd IEEE Design
Automation Conference, 1996.

4. U. Stern and D. Dill. Parallelizing the murϕ verifier. In Proc. 9th Int. Conference
on: Computer Aided Verification, volume 1254, pages 256–267, Haifa, Israel, 1997.
LNCS, Springer.

5. U. Stern and D. Dill. Using magnetic disk instead of main memory in the murϕ
verifier. In Proc. 10th Int. Conference on: Computer Aided Verification, volume
1427, pages 172–183, Vancouver, BC, Canada, 1998. LNCS, Springer.

6. U. Stern and D. L. Dill. Improved probabilistic verification by hash compaction.
In IFIP WG 10.5 Advanced Research Working Conference on: Correct Hardware
Design and Verification Methods (CHARME), pages 206–224, 1995.

7. url: http://verify.stanford.edu/ uli/ research.html.
8. T. Stornetta and F. Brewer. Implementation of an efficient parallel bdd package.

In 33rd IEEE Design Automation Conference, pages 641–644, 1996.
9. E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. Exploiting transition

locality in automatic verification. In IFIP WG 10.5 Advanced Research Working
Conference on: Correct Hardware Design and Verification Methods (CHARME).
LNCS, Springer, Sept 2001.


	Introduction
	State Space Exploration Algorithms
	Serializing CBF and DBF
	Experimental Results
	Conclusions



